Androgen receptor splicing variant 7 (ARV7) inhibits docetaxel sensitivity by inactivating the spindle assembly checkpoint

雄激素受体剪接变体 7 (ARV7) 通过抑制纺锤体组装检查点来抑制多西他赛敏感性

阅读:4
作者:Bingbing Yu, Yanan Liu, Haoge Luo, Jiaying Fu, Yang Li, Chen Shao

Abstract

The clinical efficacy of docetaxel (DTX) in prostate cancer treatment is barely satisfactory due to diverse responses of the patients, including the development of resistance. Recently, aberrant androgen receptor (AR) signaling, including expression of the constitutively active ARV7, was reported to contribute to DTX resistance. However, the underlying molecular mechanism remains largely unknown. Of note, previous studies have highlighted that ARV7, unlike its parental AR, potentially favors the expression of some genes involved in cell cycle progression. Since DTX mainly targets microtubule dynamics and mitosis, we wanted to test whether ARV7 plays a specific role in mitotic regulation and whether this activity is involved in DTX resistance. In the present study, we found that ARV7 mediates DTX sensitivity through inactivating the spindle assembly checkpoint (SAC) and promoting mitotic slippage. By shifting the balance to the slippage pathway, ARV7-expressing cells are more likely to escape from mitotic death induced by acute DTX treatment. Furthermore, we also identified E2 enzyme UBE2C as the primary downstream effector of ARV7 in promoting the SAC inactivation and premature degradation of cyclin B1. Moreover, we showed that combination treatment of DTX and an inhibitor of mitotic exit can exert synergistic effect in high ARV7-expressing prostate cancer cells. In sum, our work identified a novel role of ARV7 in promoting DTX resistance and offering a potential path to combat DTX resistance related to abnormal activation of the AR signaling and mitotic dysregulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。