Dexamethasone mitigates remdesivir-induced liver toxicity in human primary hepatocytes and COVID-19 patients

地塞米松可减轻瑞德西韦引起的人原代肝细胞和 COVID-19 患者的肝毒性

阅读:6
作者:Kaiyan Liu, Sydney Stern, Emily L Heil, Linhao Li, Rula Khairi, Scott Heyward, Hongbing Wang

Background

Coronavirus disease 2019 (COVID-19) is a global pandemic that has caused more than 600 million cases and over six million deaths worldwide. Despite the availability of vaccination, COVID-19 cases continue to grow making pharmacological interventions essential. Remdesivir (RDV) is an FDA-approved antiviral drug for treatment of both hospitalized and non-hospitalized COVID-19 patients, albeit with potential for hepatotoxicity. This study characterizes the hepatotoxicity of RDV and its interaction with dexamethasone (DEX), a corticosteroid often co-administered with RDV for inpatient treatment of COVID-19.

Conclusion

Our findings obtained from in vitro cell-based experiments and patient data analysis provide evidence suggesting combination of DEX and RDV holds the potential to reduce the likelihood of RDV-induced liver injury in hospitalized COVID-19 patients.

Methods

Human primary hepatocytes and HepG2 cells were used as in vitro models for toxicity and drug-drug interaction studies. Real-world data from hospitalized COVID-19 patients were analyzed for drug-induced elevation of serum ALT and AST.

Results

In cultured hepatocytes, RDV markedly reduced the hepatocyte viability and albumin synthesis, while it increased the cleavage of caspase-8 and caspase-3, phosphorylation of histone H2AX, and release of ALT and AST in a concentration-dependent manner. Importantly, co-treatment with DEX partially reversed RDV-induced cytotoxic responses in human hepatocytes. Moreover, data from COVID-19 patients treated with RDV with and without DEX co-treatment suggested that among 1037 patients matched by propensity score, receiving the drug combination was less likely to result in elevation of serum AST and ALT levels (≥ 3 × ULN) compared to the RDV alone treated patients (OR = 0.44, 95% CI = 0.22-0.92, p = 0.03).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。