Altered generation of induced regulatory T cells in the FVB.mdr1a-/- mouse model of colitis

FVB.mdr1a-/- 小鼠结肠炎模型中诱导调节性 T 细胞的生成改变

阅读:3
作者:S M Tanner, E M Staley, R G Lorenz

Abstract

The FVB.mdr1a(-/-) mouse, lacking the small molecule pump P-glycoprotein (P-gp), is a commonly used model for the study of spontaneous T cell-mediated colitis. In addition, MDR1 polymorphisms and P-gp deficiency in humans have been linked to the development of ulcerative colitis. We now demonstrate that mice with P-gp deficiency have decreased levels of Foxp3(+) regulatory T cells (Tregs) in the intestinal lamina propria. This decrease is not due to either increased Treg apoptosis, altered Treg trafficking, or enhanced Treg plasticity to become Foxp3(+)IL-17(+) cells. Instead, P-gp deficiency appears to restrict the development of induced Treg cells (iTregs), as fewer Foxp3(+) iTregs developed from naive FVB.mdr1a(-/-) T cells both upon transforming growth factor-β (TGF-β) treatment in vitro and after adoptive transfer into FVB.rag2(-/-) recipients. Rather, in vitro TGF-β treatment results in a IL-17(+)CD4(+) T cell. This failure of iTregs to develop explains the decrease in Foxp3(+) Tregs in the FVB.mdr1a(-/-) intestine, representing a need to investigate this novel disease mechanism in human inflammatory bowel disease patients with MDR1 polymorphisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。