Simvastatin inhibits stem cell proliferation in human leiomyoma via TGF-β3 and Wnt/β-Catenin pathways

辛伐他汀通过 TGF-β3 和 Wnt/β-Catenin 通路抑制人类平滑肌瘤干细胞增殖

阅读:5
作者:Sadia Afrin, Mohamed Ali, Malak El Sabeh, Qiwei Yang, Ayman Al-Hendy, Mostafa A Borahay

Abstract

Uterine leiomyoma (UL) is the most common gynaecologic tumour, affecting an estimated 70 to 80% of women. Leiomyomas develop from the transformation of myometrial stem cells into leiomyoma stem (or tumour-initiating) cells. These cells undergo self-renewal and differentiation to mature cells, both are necessary for the maintenance of tumour stem cell niche and tumour growth, respectively. Wnt/β-catenin and TGF-β/SMAD pathways, both overactive in UL, promote stem cell self-renewal, crosstalk between stem and mature cells, cellular proliferation, extracellular matrix (ECM) accumulation and drive overall UL growth. Recent evidence suggests that simvastatin, an antihyperlipidemic drug, may have anti-leiomyoma properties. Herein, we investigated the effects of simvastatin on UL stem cells. We isolated leiomyoma stem cells by flow cytometry using DyeCycle Violet staining and Stro-1/CD44 surface markers. We found that simvastatin inhibits proliferation and induces apoptosis in UL stem cells. In addition, it also suppressed the expression of the stemness markers Nanog, Oct4 and Sox2. Simvastatin significantly decreased the production of the key ECM proteins, collagen 1 and fibronectin. Finally, it inhibited genes and/or proteins expression of TGF-β1, 2 and 3, SMAD2, SMAD4, Wnt4, β-Catenin, LRP6, AXIN2 and Cyclin D1 in UL stem cells, all are key drivers of the TGF-β3/SMAD2 and Wnt4/β-Catenin pathways. Thus, we have identified a novel stem cell-targeting anti-leiomyoma simvastatin effect. Further studies are needed to replicate these findings in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。