Axonal Length Determines Distinct Homeostatic Phenotypes in Human iPSC Derived Motor Neurons on a Bioengineered Platform

在生物工程平台上,轴突长度决定了人类 iPSC 衍生运动神经元中不同的稳态表型

阅读:4
作者:Cathleen Hagemann, Carmen Moreno Gonzalez, Ludovica Guetta, Giulia Tyzack, Ciro Chiappini, Andrea Legati, Rickie Patani, Andrea Serio

Abstract

Stem cell-based experimental platforms for neuroscience can effectively model key mechanistic aspects of human development and disease. However, conventional culture systems often overlook the engineering constraints that cells face in vivo. This is particularly relevant for neurons covering long range connections such as spinal motor neurons (MNs). Their axons extend up to 1m in length and require a complex interplay of mechanisms to maintain cellular homeostasis. However, shorter axons in conventional cultures may not faithfully capture important aspects of their longer counterparts. Here this issue is directly addressed by establishing a bioengineered platform to assemble arrays of human axons ranging from micrometers to centimeters, which allows systematic investigation of the effects of length on human axonas for the first time. This approach reveales a link between length and metabolism in human MNs in vitro, where axons above a "threshold" size induce specific molecular adaptations in cytoskeleton composition, functional properties, local translation, and mitochondrial homeostasis. The findings specifically demonstrate the existence of a length-dependent mechanism that switches homeostatic processes within human MNs. The findings have critical implications for in vitro modeling of several neurodegenerative disorders and reinforce the importance of modeling cell shape and biophysical constraints with fidelity and precision in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。