Conclusions
Collectively, our findings suggest that NeoVax stimulated the expansion of neoantigen-specific effector T cells and provide encouraging results to aid in the development of future neoantigen vaccine-based clinical trials in patients with GBM. Herein, we demonstrate the feasibility of incorporating multisector sampling in cancer vaccine design and provide information on the clinical applicability of clonality, distribution, and immunogenicity of the neoantigen landscape in patients with GBM.
Methods
In this study, we report the findings of four patients enrolled onto the NeoVax clinical trial (NCT0342209).
Purpose
Outcomes for patients with glioblastoma (GBM) remain poor despite multimodality treatment with surgery, radiation, and chemotherapy. There are few immunotherapy options due to the lack of tumor immunogenicity. Several clinical trials have reported promising
Results
Immune reactivity to NeoVax neoantigens was assessed in peripheral blood mononuclear cells pre- and post-NeoVax for patients 1 to 3 using IFNγ-ELISPOT assay. A statistically significant increase in IFNγ producing T cells at the post-NeoVax time point for several neoantigens was observed. Furthermore, a post-NeoVax tumor biopsy was obtained from patient 3 and, upon evaluation, revealed evidence of infiltrating, clonally expanded T cells. Conclusions: Collectively, our findings suggest that NeoVax stimulated the expansion of neoantigen-specific effector T cells and provide encouraging results to aid in the development of future neoantigen vaccine-based clinical trials in patients with GBM. Herein, we demonstrate the feasibility of incorporating multisector sampling in cancer vaccine design and provide information on the clinical applicability of clonality, distribution, and immunogenicity of the neoantigen landscape in patients with GBM.
