Enhanced CXCL12/CXCR4 signaling increases tumor progression in radiation‑resistant pancreatic cancer

增强的 CXCL12/CXCR4 信号传导可增加抗辐射胰腺癌的肿瘤进展

阅读:7
作者:Tomokatsu Kato, Yoichi Matsuo, Goro Ueda, Hiromichi Murase, Yoshinaga Aoyama, Kan Omi, Yuichi Hayashi, Hiroyuki Imafuji, Kenta Saito, Mamoru Morimoto, Ryo Ogawa, Hiroki Takahashi, Shuji Takiguchi

Abstract

Pancreatic cancer (PaCa) exhibits one of the poorest prognoses among all gastrointestinal cancers due to the rapid development of treatment resistance, which renders chemotherapy and radiotherapy no longer effective. However, the mechanisms through which PaCa becomes resistant to radiotherapy are unknown. Here, we established radiation‑resistant PaCa cell lines to investigate the factors involved in radiation resistance. The role of the C‑X‑C motif chemokine ligand 12 (CXCL12)/C‑X‑C chemokine receptor type 4 (CXCR4) axis in radiation resistance in PaCa and the effects of a CXCR4 antagonist on radiation‑resistant PaCa cell lines were investigated. As confirmed by immunofluorescence staining, reverse transcription quantitative polymerase chain reaction, and western blotting, the expression of CXCR4 was higher in radiation‑resistant PaCa cell lines than that noted in normal PaCa cell lines. The invasion ability of radiation‑resistant PaCa cell lines was greater than that of normal cell lines and was enhanced by CXCL12 treatment and coculture with fibroblasts; this enhanced invasion ability was suppressed by the CXCR4 antagonist AMD070. Irradiation after treatment with the CXCR4 antagonist suppressed the colonization of radiation‑resistant PaCa cell lines. In conclusion, the CXCL12/CXCR4 axis may be involved in the radiation resistance of PaCa. These findings may facilitate the development of novel treatments for PaCa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。