Glucocorticoids enhance the in vivo migratory response of human monocytes

糖皮质激素增强人类单核细胞的体内迁移反应

阅读:4
作者:Mark P Yeager, Patricia A Pioli, Jane Collins, Fiona Barr, Sara Metzler, Brian D Sites, Paul M Guyre

Abstract

Glucocorticoids (GCs) are best known for their potent anti-inflammatory effects. However, an emerging model for glucocorticoid (GC) regulation of in vivo inflammation also includes a delayed, preparatory effect that manifests as enhanced inflammation following exposure to an inflammatory stimulus. When GCs are transiently elevated in vivo following exposure to a stressful event, this model proposes that a subsequent period of increased inflammatory responsiveness is adaptive because it enhances resistance to a subsequent stressor. In the present study, we examined the migratory response of human monocytes/macrophages following transient in vivo exposure to stress-associated concentrations of cortisol. Participants were administered cortisol for 6h to elevate in vivo cortisol levels to approximate those observed during major systemic stress. Monocytes in peripheral blood and macrophages in sterile inflammatory tissue (skin blisters) were studied before and after exposure to cortisol or placebo. We found that exposure to cortisol induced transient upregulation of monocyte mRNA for CCR2, the receptor for monocyte chemotactic protein-1 (MCP-1/CCL2) as well as for the chemokine receptor CX3CR1. At the same time, mRNA for the transcription factor IκBα was decreased. Monocyte surface expression of CCR2 but not CX3CR1 increased in the first 24h after cortisol exposure. Transient exposure to cortisol also led to an increased number of macrophages and neutrophils in fluid derived from a sterile inflammatory site in vivo. These findings suggest that the delayed, pro-inflammatory effects of cortisol on the human inflammatory responses may include enhanced localization of effector cells at sites of in vivo inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。