Molecular mechanism of atractylon in the invasion and migration of hepatic cancer cells based on high‑throughput sequencing

基于高通量测序探讨苍术酮影响肝癌细胞侵袭和迁移的分子机制

阅读:6
作者:Yang Cheng, Jian Ping, Jianjie Chen, Yifei Fu, Hui Zhao, Jiahua Xue

Abstract

The aim of the present study was to investigate the molecular mechanisms of atractylon in the inhibition of invasion and migration of hepatic cancer cells. High‑throughput sequencing was used to compare the expression of long non‑coding (lnc)RNAs between hepatic carcinoma and healthy controls. A competing endogenous RNA network was constructed. The top significantly differentially expressed lncRNAs were screened and verified by reverse transcription‑quantitative PCR in vitro and in vivo. Small interfering (si)RNA against thymopoietin‑antisense 1 (TMPO‑AS1) or coiled‑coil domain‑containing 183‑antisense 1 (CCDC183‑AS1) overexpression (oe) vectors were transfected into cells following atractylon treatment. Wound healing and Matrigel assays were used to determine the effects of migration and invasion, respectively. Western blot analysis was used to detect the expression levels of invasion‑ and migration‑related proteins, including N‑cadherin, E‑cadherin and MMP‑2. Flow cytometry analysis was used to detect apoptosis. Based on transcriptome sequencing and analysis, the top seven upregulated [(FAM201A, RP11‑640M9.2, AL589743.1, TMEM51‑AS1, clathrin heavy chain‑like 1 (CLTCL1), TMPO‑AS1 and LINC00652] and top six downregulated lncRNAs (RP11‑465B22.5, CCDC183‑AS1, TCONS_00072529, RP11‑401F2.3, RP11‑290F20.1 and TCONS_00070568) were identified. Only TMPO‑AS1 and CCDC183‑AS1 were differently regulated by atractylon in vivo. The proliferative ability of HepG2 liver cancer cells decreased, whereas the apoptotic rate improved after atractylon treatment. Notably, the invasive and migratory ability of HepG2 cells significantly declined. In addition, siTMPO‑AS1 and oeCCDC183‑AS1 reduced the effect of atractylon in vitro. Atractylon was demonstrated to regulate the expression of TMPO‑AS1 and CCDC183‑AS1 and inhibited the invasion and migration of liver cancer cells. Thus, TMPO‑AS1 and CCDC183‑AS1 may be potential targets for diagnosis and treatment of hepatic carcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。