Positioning regulation of organelle network via Chinese microneedle

中药微针对细胞器网络定位的调控

阅读:7
作者:Feng Lin, Lei Xiang, Longxi Wu, Yupu Liu, Qinzhe Jiang, Lianfu Deng, Wenguo Cui

Abstract

The organelle network is a key factor in the repair and regeneration of lesion. However, effectively intervening in the organelle network which has complex interaction mechanisms is challenging. In this study, on the basis of electromagnetic laws, we constructed a biomaterial-based physical/chemical restraint device. This device was designed to jointly constrain electrical and biological factors in a conductive screw-threaded microneedle (ST-needle) system, identifying dual positioning regulation of the organelle network. The unique physical properties of this system could accurately locate the lesion and restrict the current path to the lesion cells through electromagnetic laws, and dynamic Van der Waals forces were activated to release functionalized hydrogel microspheres. Subsequently, the mitochondria-endoplasmic reticulum (ER) complex was synergistically targeted by increasing mitochondrial ATP supply to the ER via electrical stimulation and by blocking calcium current from the ER to the mitochondria using microspheres, and then the life activity of the lesion cells was effectively restored.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。