High-Throughput Cellular Thermal Shift Assay Using Acoustic Transfer of Protein Lysates

利用蛋白质裂解物的声学转移进行高通量细胞热位移分析

阅读:7
作者:Ashley E Owens, Michael J Iannotti, Tino W Sanchez, Ty Voss, Abhijeet Kapoor, Matthew D Hall, Juan J Marugan, Sam Michael, Noel Southall, Mark J Henderson

Abstract

Cellular thermal shift assay (CETSA) is a valuable method to confirm target engagement within a complex cellular environment, by detecting changes in a protein's thermal stability upon ligand binding. The classical CETSA method measures changes in the thermal stability of endogenous proteins using immunoblotting, which is low-throughput and laborious. Reverse-phase protein arrays (RPPAs) have been demonstrated as a detection modality for CETSA; however, the reported procedure requires manual processing steps that limit throughput and preclude screening applications. We developed a high-throughput CETSA using an acoustic RPPA (HT-CETSA-aRPPA) protocol that is compatible with 96- and 384-well microplates from start-to-finish, using low speed centrifugation to remove thermally destabilized proteins. The utility of HT-CETSA-aRPPA for guiding structure-activity relationship studies was demonstrated for inhibitors of lactate dehydrogenase A. Additionally, a collection of kinase inhibitors was screened to identify compounds that engage MEK1, a clinically relevant kinase target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。