Treatment of acetaminophen-induced liver failure by blocking the death checkpoint protein TRAIL

通过阻断死亡检查点蛋白 TRAIL 治疗对乙酰氨基酚引起的肝功能衰竭

阅读:5
作者:Qian Chen, Dehong Yan, Qingmei Zhang, Guizhong Zhang, Meng Xia, Junxin Li, Wugen Zhan, Enyun Shen, Zhihuan Li, Lilong Lin, Youhai H Chen, Xiaochun Wan

Abstract

Acetaminophen (APAP) is one of the most commonly used drugs worldwide, and APAP-induced liver injury is the most frequent cause of acute liver failure in developed countries. However, the mechanisms of APAP-induced hepatotoxicity are not well understood, and treatment options for the disorder are very limited. Here, we show that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a major mediator of APAP-induced liver injury in mice, and its blockade markedly ameliorates the liver failure. In APAP-treated mice, TRAIL was expressed in the liver, spleen, and peripheral blood primarily by CD11b+Gr1+ neutrophils. The concentration of soluble TRAIL in the blood, and the frequencies of TRAIL+ leukocytes in the spleen and liver positively correlated with the severity of liver injury. APAP sensitized hepatocytes to TRAIL-induced apoptosis by upregulating the expression of the TRAIL receptor DR5 (death receptor 5), presumably through its transcription factor CHOP (C/EBP homologous protein). Importantly, blocking TRAIL with a soluble DR5-Fc fusion protein (sDR5-Fc) significantly attenuated APAP-induced liver injury, the hepatic infiltration of leukocytes, the levels of inflammatory cytokines, and the mortality of mice. When administered alongside N-acetylcysteine, sDR5-Fc further protected against APAP-induced acute liver injury. Thus, the TRAIL-DR5 signaling pathway plays a key role in APAP-induced liver inflammation and failure, and its blockade represents an effective new strategy to treat the liver disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。