Regioselective Synthesis of 5- and 3-Hydroxy- N-Aryl-1 H-Pyrazole-4-Carboxylates and Their Evaluation as Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase

5- 和 3-羟基-N-芳基-1 H-吡唑-4-羧酸的区域选择性合成及其作为恶性疟原虫二氢乳清酸脱氢酶抑制剂的评价

阅读:5
作者:Luka Vah, Tadej Medved, Uroš Grošelj, Marina Klemenčič, Črtomir Podlipnik, Bogdan Štefane, Jernej Wagger, Marko Novinec, Jurij Svete

Abstract

In silico evaluation of various regioisomeric 5- and 3-hydroxy-substituted alkyl 1-aryl-1H-pyrazole-4-carboxylates and their acyclic precursors yielded promising results with respect to their binding in the active site of dihydroorotate dehydrogenase of Plasmodium falciparum (PfDHODH). Consequently, four ethyl 1-aryl-5-hydroxy-1H-pyrazole-4-carboxylates and their 3-hydroxy regioisomers were prepared by two-step syntheses via enaminone-type reagents or key intermediates. The synthesis of 5-hydroxy-1H-pyrazoles was carried out using the literature protocol comprising acid-catalyzed transamination of diethyl [(dimethylamino)methylene]malonate with arylhydrazines followed by base-catalyzed cyclization of the intermediate hydrazones. For the synthesis of isomeric methyl 1-aryl-3-hydroxy-1H-pyrazole-4-carboxylates, a novel two-step synthesis was developed. It comprises acylation of hydrazines with methyl malonyl chloride followed by cyclization of the hydrazines with tert-butoxy-bis(dimethylamino)methane. Testing the pyrazole derivatives for the inhibition of PfDHODH showed that 1-(naphthalene-2-yl)-5-hydroxy-1H-pyrazole-4-carboxylate and 1-(naphthalene-2-yl)-, 1-(2,4,6-trichlorophenyl)-, and 1-[4-(trifluoromethyl)phenyl]-3-hydroxy-1H-pyrazole-4-carboxylates (~30% inhibition) were slightly more potent than a known inhibitor, diethyl α-{[(1H-indazol-5-yl)amino]methylidene}malonate (19% inhibition).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。