Conclusions
Circulating TGFβ+ exosomes in the plasma of patients with HNSCC emerge as potential non-invasive biomarkers of disease progression in HNSCC.
Methods
The 4-nitroquinoline-1-oxide (4-NQO) mouse model was used to study changes in TGFβ expression levels during oral carcinogenesis. In human HNSCC, TGFβ and Smad3 protein expression levels and TGFB1 gene expression were determined. Soluble TGFβ levels were evaluated by ELISA and TGFβ bioassays. Exosomes were isolated from plasma using size exclusion chromatography, and TGFβ content was quantified using bioassays and bioprinted microarrays.
Results
During 4-NQO carcinogenesis, TGFβ levels in tumour tissues and in serum increased as the tumour progressed. The TGFβ content of circulating exosomes also increased. In HNSCC patients, TGFβ, Smad3 and TGFB1 were overexpressed in tumour tissues and correlated with increased soluble TGFβ levels. Neither TGFβ expression in tumours nor levels of soluble TGFβ correlated with clinicopathological data or survival. Only exosome-associated TGFβ reflected tumour progression and correlated with tumour size. Conclusions: Circulating TGFβ+ exosomes in the plasma of patients with HNSCC emerge as potential non-invasive biomarkers of disease progression in HNSCC.
