Stability and integrity of self-assembled bovine parvovirus virus‑like particles (BPV‑VLPs) of VP2 and combination of VP1VP2 assisted by baculovirus-insect cell expression: a potential logistical platform for vaccine deployment

杆状病毒-昆虫细胞表达辅助 VP2 自组装牛细小病毒样颗粒 (BPV-VLP) 和 VP1VP2 组合的稳定性和完整性:疫苗部署的潜在物流平台

阅读:7
作者:Ashenafi Kiros Wubshet, Guo-Xiu Li, Qian Li, Jun-Fei Dai, Yao-Zhong Ding, Luoyi Zhou, Min Qu, Yang Wang, Zhongyuan Ma, Gebremeskel Mamu Werid, Birhanu Hadush Abera, Asmelash Tassew Kebede, Yuefeng Sun, Xiangping Yin, Yongsheng Liu, Zhang Jie

Background

Bovine parvovirus (BPV) is an autonomous DNA virus with a smaller molecular size and subtle differences in its structural proteins, unlike other animal parvoviruses. More importantly, this virus has the potential to produce visible to silent economic catastrophes in the livestock business, despite receiving very little attention. Parvoviral virus-like particles (VLPs) as vaccines and as logistical platforms for vaccine deployment are well studied. However, no single experimental report on the role of VP1 in the assembly and stability of BPV-VLPs is available. Furthermore, the self-assembly, integrity and stability of the VLPs of recombinant BPV VP2 in comparison to VP1 VP2 Cap proteins using any expression method has not been studied previously. In this study, we experimentally evaluated the self-assembling ability with which BPV virus-like particles (VLPs) could be synthesized from a single structural protein (VP2) and by integrating both VP2 and VP1 amino acid sequences.

Conclusions

In summary, incredible physiochemically stable BPV VP2-derived VLPs have been found to be promising candidates for the development of multivalent vaccines and immunodiagnostic kits against enteric viruses and to carry heterogeneous epitopes for various economically important livestock diseases.

Methods

In silico and experimental cloning methods were carried out. His-tagged and without-His-tag VP2 and V1VP2-encoding amino acid sequences were cloned and inserted into pFastbacdual, and insect cell-generated recombinant protein was evaluated by SDS‒PAGE and western blot. Period of infectivity and expression level were determined by IFA. The integrity and stability of the BPV VLPs were evaluated by transmission electron microscopy. The secondary structure of the BPV VLPs from both VP2 and V1VP2 was analyzed by circular dichroism.

Results

Our findings show that VP2 alone was equally expressed and purified into detectable proteins, and the stability at different temperatures and pH values was not appreciably different between the two kinds of VLPs. Furthermore, BPV-VP2 VLPs were praised for their greater purity and integrity than BPV-VP1VP2 VLPs, as indicated by SDS‒PAGE. Therefore, our research demonstrates that the function of VP1 has no bearing on the stability or integrity of BPV-VLPs. Conclusions: In summary, incredible physiochemically stable BPV VP2-derived VLPs have been found to be promising candidates for the development of multivalent vaccines and immunodiagnostic kits against enteric viruses and to carry heterogeneous epitopes for various economically important livestock diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。