Mitochondria protective and anti-apoptotic effects of peripheral benzodiazepine receptor and its ligands on the treatment of asthma in vitro and vivo

外周苯二氮卓受体及其配体在体内外治疗哮喘中的线粒体保护及抗凋亡作用

阅读:9
作者:Yurui Liu #, Zhengze Zhang #, Yuewen He, Ruogen Li, Yuhao Zhang, Hao Liu, Yong Wang, Wuhua Ma

Background

Asthma is a prevalent respiratory inflammatory disease. Abnormal apoptosis of bronchial epithelial cells is one of the major factors in the progression of asthma. Peripheral benzodiazepine receptors are highly expressed in bronchial epithelial cells, which act as a component of the mitochondrial permeability transition pore to regulate its opening and closing and apoptosis of bronchial epithelial cells. We aimed to investigate the mechanisms by which peripheral benzodiazepine receptor and its ligands, agonist 4'-Chlorodiazepam (Ro5-4864) and antagonist 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK 11,195), modulate the mitochondrial function and cell apoptosis in the treatment of asthma.

Conclusion

Peripheral benzodiazepine receptor serves as a potential therapeutic target for the treatment of asthma, with its ligands exerting mitochondrial protective and anti-apoptotic effects on bronchial epithelial cells.

Methods

In vitro study, Ro5-4864 and PK 11,195 were utilized to pretreat cells prior to the inflammatory injury induced by Lipopolysaccharide. The reactive oxygen species, the apoptosis of cell, the mitochondrial membrane potentials, the ultrastructures of the mitochondria and the expression levels of peripheral benzodiazepine receptors and apoptosis-related proteins and genes were detected. In vivo study, mice were administrated intraperitoneally with Ro5-4864 and PK 11,195 before sensitized and challenged by ovalbumin. Serum IgE and bronchoalveolar lavage fluid cytokines were detected, and lung tissues were underwent the histopathological examination.

Results

The ligands of peripheral benzodiazepine receptor counteracted the effects of the increase of reactive oxygen species, the elevated extent of apoptosis, the decrease of mitochondrial membrane potentials and the disruption of mitochondrial ultrastructures induced by Lipopolysaccharide. The ligands also promoted the expression of anti-apoptosis-related proteins and genes and inhibited the expression of pro-apoptosis-related proteins and genes. Besides, the ligands reduced the levels of serum IgE and bronchoalveolar lavage fluid cytokines in asthmatic mice and attenuated the histopathological damage of lungs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。