Apolipoprotein C-I is an APOE genotype-dependent suppressor of glial activation

载脂蛋白 CI 是 APOE 基因型依赖性的神经胶质活化抑制剂

阅读:4
作者:Eiron Cudaback, Xianwu Li, Yue Yang, Thomas Yoo, Kathleen S Montine, Suzanne Craft, Thomas J Montine, Christopher Dirk Keene

Background

Inheritance of the human ε4 allele of the apolipoprotein (apo) E gene (APOE) significantly increases the risk of developing Alzheimer's disease (AD), in addition to adversely influencing clinical outcomes of other neurologic diseases. While apoE isoforms differentially interact with amyloid β (Aβ), a pleiotropic neurotoxin key to AD etiology, more recent work has focused on immune regulation in AD pathogenesis and on the mechanisms of innate immunomodulatory effects associated with inheritance of different APOE alleles. APOE genotype modulates expression of proximal genes including APOC1, which encodes a small apolipoprotein that is associated with Aβ plaques. Here we tested the hypothesis that APOE-genotype dependent innate immunomodulation may be mediated in part by apoC-I.

Conclusions

ApoC-I is immunosuppressive. Our results illuminate a novel potential mechanism for APOE genotype risk for AD; one in which patients with an ε4 allele have decreased expression of apoC-I resulting in increased innate immune activity.

Methods

ApoC-I concentration in cerebrospinal fluid from control subjects of differing APOE genotypes was quantified by ELISA. Real-time PCR and ELISA were used to analyze apoC-I mRNA and protein expression, respectively, in liver, serum, cerebral cortex, and cultured primary astrocytes derived from mice with targeted replacement of murine APOE for human APOE ε3 or ε4. ApoC-I direct modulation of innate immune activity was investigated in cultured murine primary microglia and astrocytes, as well as human differentiated macrophages, using specific toll-like receptor agonists LPS and PIC as well as Aβ.

Results

ApoC-I levels varied with APOE genotype in humans and in APOE targeted replacement mice, with ε4 carriers showing significantly less apoC-I in both species. ApoC-I potently reduced pro-inflammatory cytokine secretion from primary murine microglia and astrocytes, and human macrophages, stimulated with LPS, PIC, or Aβ. Conclusions: ApoC-I is immunosuppressive. Our results illuminate a novel potential mechanism for APOE genotype risk for AD; one in which patients with an ε4 allele have decreased expression of apoC-I resulting in increased innate immune activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。