Giant proteins in a giant cell: Molecular basis of ultrafast Ca2+-dependent cell contraction

巨细胞中的巨型蛋白质:超快 Ca2+ 依赖性细胞收缩的分子基础

阅读:6
作者:Jing Zhang, Weiwei Qin, Che Hu, Siyu Gu, Xiaocui Chai, Mingkun Yang, Fang Zhou, Xueyan Wang, Kai Chen, Guanxiong Yan, Guangying Wang, Chuanqi Jiang, Alan Warren, Jie Xiong, Wei Miao

Abstract

The giant single-celled eukaryote, Spirostomum, exhibits one of the fastest movements in the biological world. This ultrafast contraction is dependent on Ca2+ rather than ATP and therefore differs to the actin-myosin system in muscle. We obtained the high-quality genome of Spirostomum minus from which we identified the key molecular components of its contractile apparatus, including two major Ca2+ binding proteins (Spasmin 1 and 2) and two giant proteins (GSBP1 and GSBP2), which act as the backbone and allow for the binding of hundreds of spasmins. The evidence suggests that the GSBP-spasmin protein complex is the functional unit of the mesh-like contractile fibrillar system, which, coupled with various other subcellular structures, provides the mechanism for repetitive ultrafast cell contraction and extension. These findings improve our understanding of the Ca2+-dependent ultrafast movement and provide a blueprint for future biomimicry, design, and construction of this kind of micromachine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。