Abnormal expression of key genes and proteins in the canonical Wnt/β-catenin pathway of articular cartilage in a rat model of exercise-induced osteoarthritis

运动性骨关节炎大鼠关节软骨经典Wnt/β-catenin通路关键基因和蛋白质的异常表达

阅读:6
作者:Shen-Shen Liu, Pu Zhou, Yanqiu Zhang

Abstract

To investigate the molecular pathogenesis of the canonical Wnt/β-catenin pathway in exercise-induced osteoarthritis (OA), 30 male healthy Sprague Dawley rats were divided into three groups (control, normal exercise‑induced OA and injured exercise‑induced OA groups) in order to establish the exercise‑induced OA rat model. The mRNA and protein expression levels of Runx‑2, BMP‑2, Ctnnb1, Sox‑9, collagen Ⅱ, Mmp‑13, Wnt‑3a and β‑catenin in chondrocytes were detected by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemical staining. The mRNA levels of Runx‑2, BMP‑2 and Ctnnb1 were upregulated in the normal exercise‑induced OA and injured exercise‑induced OA groups; while Runx‑2 and BMP‑2 were upregulated in the injured exercise‑induced OA group when compared with the normal exercise‑induced OA group. The protein levels of Mmp‑13, Wnt‑3a and β‑catenin were increased and collagen Ⅱ was reduced in the normal exercise‑induced OA and injured exercise‑induced OA groups. Ctnnb1, Wnt‑3a and β‑catenin, which are key genes and proteins in the canonical Wnt/β‑catenin pathway, were abnormally expressed in chondrocytes of the exercise‑induced OA rat model. Ctnnb1, β‑catenin and Wnt‑3a were suggested to participate in the pathogenesis of exercise‑induced OA by abnormally activating the Wnt/β‑catenin pathway during physical exercise due to excessive pressure. The results of the present study may provide an improved understanding of the pathogenesis of exercise-induced OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。