Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation

通过激光诱导图案化调节间充质干细胞的机械传感,通过激活 Wnt/β-catenin 信号通路加速组织重建

阅读:7
作者:Jieni Fu, Xiangmei Liu, Lei Tan, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Yufeng Zheng, Kelvin Wai Kwok Yeung, Paul K Chu, Shuilin Wu

Significance

It remains a challenge to modify poor osteogenic and osteoconductive properties of titanium alloy bases on the inherent poverty of titanium. We demonstrate that ordered microtopography and disordered nano topography pattern structure could lead to osteogenic differentiation in vitro and bone regeneration in vivo. Furthermore, the pattern structure is created through selective laser melting and alkali heat. And the structure only takes advantage of titanium itself and does not bring in active film, such as hydroxyapatite. On the other hand, we find that cell shape and orientation show angle-orientation tendency due to the polarity, which involves with mechanical signal created via patterned structure. Meanwhile, the Wnt/Ca2+ signaling pathway is activated.

Statement of significance

It remains a challenge to modify poor osteogenic and osteoconductive properties of titanium alloy bases on the inherent poverty of titanium. We demonstrate that ordered microtopography and disordered nano topography pattern structure could lead to osteogenic differentiation in vitro and bone regeneration in vivo. Furthermore, the pattern structure is created through selective laser melting and alkali heat. And the structure only takes advantage of titanium itself and does not bring in active film, such as hydroxyapatite. On the other hand, we find that cell shape and orientation show angle-orientation tendency due to the polarity, which involves with mechanical signal created via patterned structure. Meanwhile, the Wnt/Ca2+ signaling pathway is activated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。