Dexmedetomidine alleviates insulin resistance in hepatocytes by reducing endoplasmic reticulum stress

右美托咪啶通过降低内质网应激减轻肝细胞胰岛素抵抗

阅读:7
作者:Fanfan Liu, Shaojun Zhu, Lifeng Ni, Ling'er Huang, Kuirong Wang, Yanfeng Zhou

Conclusion

DEX may alleviate IR in hepatocytes by reducing ERS serving to restore insulin action via the IRS-1/PI3K/AKT pathway.

Methods

HepG2 and LO2 cells were treated with different concentrations of insulin. The glucose content assay and Cell Counting Kit-8 (CCK-8) were then employed to determine the optimal insulin concentration capable of inducing IR without affecting cell viability. Insulin-resistant hepatocytes were cultured with different concentrations of DEX for 24 h, and the glucose concentration in the supernatant was measured. ERS was assessed by qPCR and western blotting. The latter was also used to quantify the expression of phosphorylated protein kinase B (p-AKT), phosphoenolpyruvate carboxykinase (PEPCK), and glucose 6 phosphatase (G6Pase), which are key proteins involved in the action of insulin.

Purpose

Dexmedetomidine (DEX) stabilizes intraoperative blood glucose levels and reduces insulin resistance (IR), a common perioperative complication. However, the molecular mechanisms underlying these effects remain unclear. Since endoplasmic reticulum stress (ERS) is a mechanism of IR, this study sought to examine whether DEX can effectively alleviate IR by reducing ERS.

Results

After 48-h of culturing with 10 μg/mL insulin, glucose consumption in hepatocytes was found to be reduced. IR hepatocytes cultured with 10, 100, or 1000 ng/ml DEX for 24 h showed a concentration-dependent increase in glucose consumption. Elevated mRNA and protein levels of ERS markers binding immunoglobulin protein (BIP) and ER protein 29 (ERp29), were reversed by DEX treatment. Moreover, reduced p-AKT and increased PEPCK and G6Pase protein levels in IR hepatocytes were also restored following DEX treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。