Application of an alchemical free energy method for the prediction of thermostable DuraPETase variants

应用炼金术自由能法预测耐热 DuraPETase 变体

阅读:4
作者:Sebastian Schreiber, David Gercke, Florian Lenz, Joachim Jose

Abstract

Non-equilibrium (NEQ) alchemical free energy calculations are an emerging tool for accurately predicting changes in protein folding free energy resulting from amino acid mutations. In this study, this method in combination with the Rosetta ddg monomer tool was applied to predict more thermostable variants of the polyethylene terephthalate (PET) degrading enzyme DuraPETase. The Rosetta ddg monomer tool efficiently enriched promising mutations prior to more accurate prediction by NEQ alchemical free energy calculations. The relative change in folding free energy of 96 single amino acid mutations was calculated by NEQ alchemical free energy calculation. Experimental validation of ten of the highest scoring variants identified two mutations (DuraPETaseS61M and DuraPETaseS223Y) that increased the melting temperature (Tm) of the enzyme by up to 1 °C. The calculated relative change in folding free energy showed an excellent correlation with experimentally determined Tm resulting in a Pearson's correlation coefficient of r = - 0.84. Limitations in the prediction of strongly stabilizing mutations were, however, encountered and are discussed. Despite these challenges, this study demonstrates the practical applicability of NEQ alchemical free energy calculations in prospective enzyme engineering projects. KEY POINTS: • Rosetta ddg monomer enriches stabilizing mutations in a library of DuraPETase variants • NEQ free energy calculations accurately predict changes in Tm of DuraPETase • The DuraPETase variants S223Y, S42M, and S61M have increased Tm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。