Protective Effects of MiR-129-5p on Acute Spinal Cord Injury Rats

MiR-129-5p对急性脊髓损伤大鼠的保护作用

阅读:4
作者:Ruifeng Yang, Xiaobin Cai, Jian Li, Feng Liu, Tao Sun

Abstract

BACKGROUND Spinal cord injury (SCI) is a severe devastating condition associated with serious disability and neurologic deficits. Aberrant micro RNA (miRNA) expression has been related to a variety of central nervous system diseases including SCI. In the present study, we aimed to discover the role of miR-129-5p on SCI. MATERIAL AND METHODS An acute SCI rat model was induced, following the modified Allen method. A total of 36 rats were randomly assigned into 4 groups (n=9 in every group): Sham group; Model group (SCI+saline); SCI+NC group; and SCI+miR-129-5p group (100 nm solution, every 2 days). Basso-Beattie-Bresnahan (BBB) locomotor rating score was carried out to determine functional recovery. TUNEL (terminal dUTP nick-end labeling) staining was used to evaluate cell apoptosis. Hematoxylin and eosin staining was performed to assess the pathological state of spinal cord. Furthermore, western blot assay was conducted to measure the calpain1 and calpain2 expression. RESULTS Our data suggested that the expression level of miR-129-5p was markedly reduced in rats after SCI. Then miR-129-5p mimic was injected into the vertebral canal. We found that the SCI+miR-129-5p group had a high score in the BBB test compared with the SCI+NC group and the Model group. The overexpression of miR-129-5p obviously reduced tissue loss, damaged cells, and the number of TUNEL positive cells. Moreover, western blot assay exhibited that overexpression of miR-129-5p decreased calpain1, calpain2, and cleaved caspase-3 expression. CONCLUSIONS Our findings suggested that overexpression of miR-129-5p improved neurological function by promoting functional recovery, reducing tissue loss and cell apoptosis in rats in an SCI model, possibly through downregulation of calpain1 and calpain2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。