Decreasing auditory input induces neurogenesis impairment in the hippocampus

减少听觉输入会导致海马神经发生障碍

阅读:7
作者:Takaomi Kurioka, Sachiyo Mogi, Taku Yamashita

Abstract

Hearing loss is associated with cognitive decline and dementia risk. Sensorineural hearing loss suppresses hippocampal neurogenesis, resulting in cognitive decline. However, the underlying mechanism of impaired neurogenesis and the role of microglial activation and stress responses related to hearing loss in the hippocampus remains unknown. Using a conductive hearing loss (CHL) model, we investigated whether a decrease in sound level could induce impairment of hippocampal neurogenesis and examined the differences between unilateral CHL (uCHL) and bilateral CHL (bCHL). To establish the CHL mouse model, ears were unilaterally or bilaterally occluded for five weeks by auditory canal ligation. Although hearing thresholds were significantly increased following CHL, CHL mice exhibited no significant loss of spiral ganglion or hippocampal neurons. Hippocampal neurogenesis was significantly and equally decreased in both sides following uCHL. More severe decreases in hippocampal neurogenesis were observed in both sides in bCHL mice compared with that in uCHL mice. Furthermore, microglial invasion significantly increased following CHL. Serum cortisol levels, which indicate stress response, significantly increased following bCHL. Therefore, auditory deprivation could lead to increased microglial invasion and stress responses and might be a risk factor for hippocampal neurogenesis impairment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。