Artificial aging conditions for Artemisia argyi leaves based on quality-inflammation-quality marker transformation

基于品质-炎症-品质标志物转化的艾叶人工老化条件

阅读:7
作者:Xiuli Guo, DongPeng Wang, Yangxin Xiao, Huangliang Cao, Ding Yao, Gaoyuan Chen, Shuiqing Li, Guangzhong Wang, Jiyuan Tu, Yanju Liu

Background

Appropriate conditions for storage of Artemisia argyi leaves reduce irritation during treatment and increase the active ingredient content. Naturally aged A. argyi leaves (≥1 year) are optimal for moxibustion; however, this process is time-consuming and costly. A comprehensive understanding of the conditions for artificial aging of A. argyi leaves and the mechanism of quality-marker conversion are required to guarantee A. argyi quality and moxibustion efficacy.

Conclusion

Conditions for artificial aging of A. argyi leaves were identified for the first time, and the equivalent efficacy of artificially aged A. argyi leaves and naturally aged A. argyi leaves for improving UC was confirmed. This method for artificial aging of A. argyi leaves not only reduces the time and cost associated with this process, but also provides technical support to ensure the quality and stability of artificially aged A. argyi leaves. In addition, caffeic acid was identified as a potential quality-marker for establishing standards and specifications for aging A. argyi leaves for the first time, and its possible transformation mechanism was preliminarily elucidated.

Objective

To identify the optimal conditions for artificial aging of A. argyi leaves and clarify the mechanism of quality-marker conversion. Method: Gas chromatography (GC), high-performance liquid chromatography (HPLC), colorimeter (CD), and near-infrared spectroscopy (NIRS) were used to determine the chemical composition of A. argyi leaves before and after artificial and natural (1 year) aging and to determine the optimal artificial aging conditions. The effects of both artificially and naturally aged A. argyi leaves were then evaluated in a mouse model of ulcerative colitis (UC). The main chemical components of aged A. argyi leaves were then analyzed to determine quality-markers and the transformation mechanism.

Results

Comprehensive analysis of volatile and non-volatile components, color values, and characteristic near-infrared spectra revealed that the quality of artificially aged A. argyi leaves was similar to that of naturally aged A. argyi leaves. In the mouse model, artificially and naturally aged A. argyi leaves not only improved the symptoms of UC with the same therapeutic effects, but also safeguarded the barrier of the colonic mucosa and prevented the release of colitis-related substances. In addition, the content of caffeic acid converted from L-phenylalanine in A. argyi leaves increased during the aging process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。