LncRNA-XIST/microRNA-126 sponge mediates cell proliferation and glucose metabolism through the IRS1/PI3K/Akt pathway in glioma

LncRNA-XIST/microRNA-126海绵通过神经胶质瘤中的IRS1/PI3K/Akt通路介导细胞增殖和葡萄糖代谢

阅读:5
作者:Zhihua Cheng, Cong Luo, Zhilin Guo

Abstract

Abnormal glucose metabolism may contribute to cancer progression. Glioma represents a cancer resulting from an imbalance between glucose metabolism and tumor growth. However, the molecular mechanisms responsible for dysregulated brain glucose metabolism and lactate accumulation in glioma remain to be elucidated. The present study identified a long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) as a candidate to mediate glucose metabolism in glioma. Cell viability, migration, invasion, and resistance to apoptosis were evaluated in lncRNA-XIST-depleted glioblastoma cells by short hairpin RNA. Glucose uptake, lactate production, as well as levels of glucose transporter 1 (GLUT1) and GLUT3, were measured. Luciferase assay, RNA pull-down, and RNA immunoprecipitation were performed to validate the interactions among lncRNA-XIST, microRNA-126 (miR-126), and insulin receptor substrate 1 (IRS1). An in vivo analysis was carried out in nude mice bearing glioblastoma cell xenografts. The study found that lncRNA-XIST knockdown inhibited cell viability, migration, invasion, resistance to apoptosis, and glucose metabolism of glioblastoma cells. LncRNA-XIST functioned as a competing endogenous RNA of miR-126 and then regulated IRS1/PI3K/Akt pathway in glioblastoma cells. In vivo results demonstrated lncRNA-XIST knockdown reduces the tumorigenicity of glioblastoma cells. Taken together, we demonstrated a novel cellular mechanism that was dependent of the lncRNA-XIST/miR-126/IRS1/PI3K/Akt pathway in enhanced glucose metabolism in glioma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。