Chemotherapy and mismatch repair deficiency cooperate to fuel TP53 mutagenesis and ALL relapse

化疗和错配修复缺陷共同促进 TP53 诱变和 ALL 复发

阅读:7
作者:Fan Yang #, Samuel W Brady #, Chao Tang #, Huiying Sun #, Lijuan Du #, Malwine J Barz, Xiaotu Ma, Yao Chen, Houshun Fang, Xiaomeng Li, Pandurang Kolekar, Omkar Pathak, Jiaoyang Cai, Lixia Ding, Tianyi Wang, Arend von Stackelberg, Shuhong Shen, Cornelia Eckert, Jeffery M Klco, Hongzhuan Chen, Caiwen

Abstract

Chemotherapy is a standard treatment for pediatric acute lymphoblastic leukemia (ALL), which sometimes relapses with chemoresistant features. However, whether acquired drug-resistance mutations in relapsed ALL pre-exist or are induced by treatment remains unknown. Here we provide direct evidence of a specific mechanism by which chemotherapy induces drug-resistance-associated mutations leading to relapse. Using genomic and functional analysis of relapsed ALL we show that thiopurine treatment in mismatch repair (MMR)-deficient leukemias induces hotspot TP53 R248Q mutations through a specific mutational signature (thio-dMMR). Clonal evolution analysis reveals sequential MMR inactivation followed by TP53 mutation in some patients with ALL. Acquired TP53 R248Q mutations are associated with on-treatment relapse, poor treatment response and resistance to multiple chemotherapeutic agents, which could be reversed by pharmacological p53 reactivation. Our findings indicate that TP53 R248Q in relapsed ALL originates through synergistic mutagenesis from thiopurine treatment and MMR deficiency and suggest strategies to prevent or treat TP53-mutant relapse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。