Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells

BACE1的药理学抑制可通过刺激巨噬细胞吞噬肿瘤细胞来抑制胶质母细胞瘤的生长。

阅读:1
作者:Kui Zhai ,Zhi Huang ,Qian Huang ,Weiwei Tao ,Xiaoguang Fang ,Aili Zhang ,Xiaoxia Li ,George R Stark ,Thomas A Hamilton ,Shideng Bao

Abstract

Glioblastoma (GBM) contains abundant tumor-associated macrophages (TAMs). The majority of TAMs are tumor-promoting macrophages (pTAMs), while tumor-suppressive macrophages (sTAMs) are the minority. Thus, reprogramming pTAMs into sTAMs represents an attractive therapeutic strategy. By screening a collection of small-molecule compounds, we find that inhibiting β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) with MK-8931 potently reprograms pTAMs into sTAMs and promotes macrophage phagocytosis of glioma cells; moreover, low-dose radiation markedly enhances TAM infiltration and synergizes with MK-8931 treatment to suppress malignant growth. BACE1 is preferentially expressed by pTAMs in human GBMs and is required to maintain pTAM polarization through trans-interleukin 6 (IL-6)-soluble IL-6 receptor (sIL-6R)-signal transducer and activator of transcription 3 (STAT3) signaling. Because MK-8931 and other BACE1 inhibitors have been developed for Alzheimer's disease and have been shown to be safe for humans in clinical trials, these inhibitors could potentially be streamlined for cancer therapy. Collectively, this study offers a promising therapeutic approach to enhance macrophage-based therapy for malignant tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。