Application of Bone Marrow Mesenchymal Stem Cells Effectively Eliminates Endotoxemia to Protect Rat from Acute Liver Failure Induced by Thioacetamide

应用骨髓间充质干细胞有效消除内毒血症保护大鼠免于硫代乙酰胺诱发的急性肝衰竭

阅读:6
作者:Ting Jiang #, Geng Xia #, Bo Yang #, Hong-Wei Zhang, Yue-Shan Yin, Cheng-Wei Tang, Jin-Hui Yang

Background

Endotoxemia is related to worse clinical outcomes in acute liver failure (ALF), but its management remains unsatisfactory. In this study, we aimed to assess whether the application of bone marrow mesenchymal stem cells (BMSCs) could eliminate endotoxemia and protect rats against ALF induced by thioacetamide (TAA).

Conclusion

BMSCs can eliminate endotoxemia and reduce mortality in rats with ALF, and the PI3K/AKT/mTOR signal pathway is involved in intestinal differentiation. BMSCs transplantation could be a potential candidate for the treatment of endotoxemia in ALF.

Methods

BMSCs were isolated from rats and identified by the specific morphology, differentiation potential, and surface markers. The optimal dose of TAA for this study was explored and TAA-induced ALF rats were randomized to three groups: the normal control group (Saline), ALF group (TAA + Saline), and BMSCs-treated group (TAA + BMSCs). The intestinal migration and differentiation of BMSCs was tracked in vivo, and intestinal permeability, endotoxin and inflammatory cytokines, histology, and mortality were analyzed. Moreover, we added the inhibitor of the PI3K/AKT/mTOR signaling pathway into the co-culture system of BMSCs with enterocytes and then performed CK and Villin expression experiments to assess the role of PI3K/AKT/mTOR signal pathway in the intestinal differentiation of BMSCs.

Results

BMSCs migrated to the intestinal injury sites and differentiated into enterocytes, intestinal permeability was decreased compared with the ALF group. The higher expression of endotoxin and inflammatory cytokines were reversed after BMSCs transplantation in rats with ALF. Mortality and intestinal lesion were significantly decreased. Blocking the PI3K/AKT/mTOR signal pathway inhibited BMSCs' intestinal differentiation in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。