Sevoflurane induced neurotoxicity in neonatal mice links to a GSK3β/Drp1-dependent mitochondrial fission and apoptosis

七氟烷诱导的新生小鼠神经毒性与 GSK3β/Drp1 依赖的线粒体裂变和细胞凋亡有关

阅读:5
作者:Jinsheng Liu, Li Li, Ping Xie, Xiaoyan Zhao, Dongjing Shi, Yan Zhang, Chuxiong Pan, Tianzuo Li

Abstract

Mitochondria damage and apoptosis were found associated with sevoflurane induced neurotoxicity in developing brains of rodent and neuro cell lines. The detailed upstream mechanism remains unclear. This study explored whether sevoflurane induces neurotoxicity by activating a GSK3β (glycogen synthase kinase 3β)/Drp1 (dynamin-related protein-1)-dependent mitochondrial fission and apoptosis. Our results showed that sevoflurane exposure promoted mitochondria fission in hippocampus of neonatal mice, resulted in a prolonged escape latency from P32 (32-day-postnatal) to P35, and decreased platform crossing times on P36 as compared to the control treatment. Additionally, sevoflurane upregulated GSK3β stability and activation, promoted phosphorylation of Drp1 at Ser616 along with its translocation to mitochondria and resulted in increasing cytochrome c and cleaved casepase-3 in hippocampus of neonatal mice and in human SK-N-SH cells. Simultaneously, sevoflurane promoted the interaction between Drp1 and GSK3β. Furthermore, GSK3β activated phosphorylation of Drp1 at Ser616, induced mitochondrial fission, loss of mitochondrial membrane potential (MMP) and apoptosis in SK-N-SH cells, which was attenuated by TDZD-8, an inhibitor of GSK3β. In conclusion, sevoflurane induced neurotoxicity links to a GSK3β/Drp1 dependent mitochondrial fission and apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。