Increased plasmablasts enhance T cell-mediated beta cell destruction and promote the development of type 1 diabetes

浆母细胞增多会增强 T 细胞介导的 β 细胞破坏并促进 1 型糖尿病的发展

阅读:7
作者:Qing Ling #, Lei Shen #, Wei Zhang, DuoDuo Qu, Hongdong Wang, Bin Wang, Yong Liu, Jing Lu, Dalong Zhu, Yan Bi

Background

Although type 1 diabetes (T1D) is typically described as a T cell-mediated autoimmune disease, increasing evidence for a role of B cells has emerged. However, the pivotal disease-relevant B cell subset and its contribution to islet autoimmunity remain elusive.

Conclusions

Our study revealed that plasmablasts may function as antigen-presenting cells and promote the activation and proinflammatory response of CD4+ T cells, further contributing to the T cell-mediated beta cell destruction. Our results provide insights into the pathogenic role of plasmablasts in islet autoimmunity and may offer new translational strategies for inhibiting T1D development.

Methods

The frequencies and phenotypic characteristics of circulating B cell subsets were analyzed using flow cytometry in individuals with new-onset T1D, long-term T1D, type 2 diabetes, and nondiabetic controls, and also in a prospective cohort of patients receiving mesenchymal stromal cell (MSC) transplantation. NOD mice and adoptive transfer assay were used to dissect the role of the certain B cell subset in disease progression. An in-vitro coculture system of islets with immune cells was established to examine the response against islets and the underlying mechanisms.

Results

We identified that plasmablasts, a B cell subset at the antibody-secreting stage, were significantly increased and correlated with the deterioration of beta cell function in patients with new-onset T1D. Further, a fall of plasmablast number was associated with the preservation of beta cell function in patients who received MSC transplantation after 3 months of follow-up. Meanwhile, a gradual increase of plasmablasts in pancreatic lymph nodes during the natural progression of insulitis was observed in non-obese diabetic (NOD) mice; adoptive transfer of plasmablasts together with T cells from NOD mice accelerated diabetes onset in NOD/SCID recipients. Conclusions: Our study revealed that plasmablasts may function as antigen-presenting cells and promote the activation and proinflammatory response of CD4+ T cells, further contributing to the T cell-mediated beta cell destruction. Our results provide insights into the pathogenic role of plasmablasts in islet autoimmunity and may offer new translational strategies for inhibiting T1D development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。