Predicting IHC staining classes of NF1 using features in the hematoxylin channel

使用苏木精通道的特征预测 NF1 的 IHC 染色类型

阅读:10
作者:Wei Zhang, Mei Yee Koh, Deepika Sirohi, Jian Ying, Ben J Brintz, Beatrice S Knudsen

Abstract

Immunohistochemistry (IHC) highlights specific cell types in tissues and traditionally involves antibody staining together with a hematoxylin counterstain. The intensity and pattern of hematoxylin staining differs between cell types and reveals morphological characteristics of cells. Here, we propose that features in the hematoxylin stain can be used to predict IHC labels, such as Neurofibromin (encoded by the gene NF1). The dataset consists of 7.2 million cells from benign and kidney cancer cores in a tissue microarray. Morphology and hematoxylin (H&M) features defined within QuPath are subjected to a clustering analysis in CytoMap. H&M features are also used to train 4 different XGBoost models to predict high, low, and negative NF1 stain classes in benign renal tubules, clear cell (ccRCC), papillary (PRCC), and chromophobe (ChRCC) renal carcinoma. The prediction accuracies of NF1 staining classes in benign, ccRCC, ChRCC, and PRCC range between 70% and 90% with areas under the precision recall curve PRAUCNF1-high = 0.82+0.12, PRAUCNF1-low = 0.62+0.25, and PRAUCNF1-negative = 0.83+0.16. The most important feature for predicting the NF1 class involves the minimum cellular hematoxylin staining intensity. Together, these results demonstrate the feasibility to predict NF1 expression solely from features in hematoxylin staining using open source software. Since the hematoxylin features can be obtained from regular H&E and IHC slides, the proposed workflow has broad applicability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。