Ultrasensitive amplification-free quantification of a methyl CpG-rich cancer biomarker by single-molecule kinetic fingerprinting

通过单分子动力学指纹技术对富含甲基 CpG 的癌症生物标志物进行超灵敏无扩增定量

阅读:6
作者:Liuhan Dai, Alexander Johnson-Buck, Peter W Laird, Muneesh Tewari, Nils G Walter

Abstract

The most well-studied epigenetic marker in humans is the 5-methyl modification of cytosine in DNA, which has great potential as a disease biomarker in liquid biopsies of cell-free DNA. Currently, quantification of DNA methylation relies heavily on bisulfite conversion followed by PCR amplification and NGS or microarray analysis. PCR is subject to potential bias in differential amplification of bisulfite-converted methylated versus unmethylated sequences. Here, we combine bisulfite conversion with single-molecule kinetic fingerprinting to develop an amplification-free assay for DNA methylation at the branched-chain amino acid transaminase 1 (BCAT1) promoter. Our assay selectively responds to methylated sequences with a limit of detection below 1 fM and a specificity of 99.9999%. Evaluating complex genomic DNA matrices, we reliably distinguish 2-5% DNA methylation at the BCAT1 promoter in whole blood DNA from completely unmethylated whole-genome amplified DNA. Taken together, these results demonstrate the feasibility and sensitivity of our amplification-free, single-molecule quantification approach to improve the early detection of methylated cancer DNA biomarkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。