Conclusion
TSC has a positive effect in preventing MB-induced cytotoxicity in HEK-293 cells by increasing anti-oxidant activity and regulation of apoptotic and autophagy signaling pathways.
Methods
HEK-293 cells were exposed to diverse concentrations of TSC (2.5, 5, 10, 20, 40, 80, and 100 µM) for 24 hr. Then, MB (9 mg/ml) was added to the cells. After 24 hr, cell viability was measured through MTT, and the values of ROS generation were calculated using DCFH-DA assay. Also, autophagy and apoptosis markers in cells were assessed by western blot analysis.
Results
MB decreased viability and increased ROS levels in HEK-293 cells. However, pretreatment of HEK-293 cells with TSC for 24 hr reduced the cytotoxicity and ROS production caused by MB. Furthermore, MB enhanced both the apoptosis (cleaved caspase-3 and Bax/Bcl-2 ratio) and autophagy markers (LC3II/I ratio and Beclin-1) in HEK-293 cells. On the other hand, TSC pretreatment condensed the levels of autophagy and apoptosis criteria in response to MB cytotoxicity.
