Chromosomal-level reference genome of Chinese peacock butterfly (Papilio bianor) based on third-generation DNA sequencing and Hi-C analysis

基于第三代DNA测序和Hi-C分析的中国孔雀蝶(Papilio bianor)染色体水平参考基因组

阅读:9
作者:Sihan Lu, Jie Yang, Xuelei Dai, Feiang Xie, Jinwu He, Zhiwei Dong, Junlai Mao, Guichun Liu, Zhou Chang, Ruoping Zhao, Wenting Wan, Ru Zhang, Yuan Li, Wen Wang, Xueyan Li

Background

Papilio bianor Cramer, 1777 (commonly known as the Chinese peacock butterfly) (Insecta, Lepidoptera, Papilionidae) is a widely distributed swallowtail butterfly with a wide number of geographic populations ranging from the southeast of Russia to China, Japan, India, Vietnam, Myanmar, and Thailand. Its wing color consists of both pigmentary colored scales (black, reddish) and structural colored scales (iridescent blue or green dust). A high-quality reference genome of P. bianor is an important foundation for investigating iridescent color evolution, phylogeography, and the evolution of swallowtail butterflies. Findings: We obtained a chromosome-level de novo genome assembly of the highly heterozygous P. bianor using long Pacific Biosciences sequencing reads and high-throughput chromosome conformation capture technology. The final assembly is 421.52 Mb on 30 chromosomes (29 autosomes and 1 Z sex chromosome) with 13.12 Mb scaffold N50. In total, 15,375 protein-coding genes and 233.09 Mb of repetitive sequences were identified. Phylogenetic analyses indicated that P. bianor separated from a common ancestor of swallowtails ∼23.69-36.04 million years ago. Demographic history suggested that the population expansion of this species from the last interglacial period to the last glacial maximum possibly resulted from its decreased natural enemies and its adaptation to climate change during the glacial period. Conclusions: We present a high-quality chromosome-level reference genome of P. bianor using long-read single-molecule sequencing and Hi-C-based chromatin interaction maps. Our

Conclusions

We present a high-quality chromosome-level reference genome of P. bianor using long-read single-molecule sequencing and Hi-C-based chromatin interaction maps. Our results lay the foundation for exploring the genetic basis of special biological features of P. bianor and also provide a useful data source for comparative genomics and phylogenomics among butterflies and moths.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。