Hyperoxia-induced miR-342-5p down-regulation exacerbates neonatal bronchopulmonary dysplasia via the Raf1 regulator Spred3

高氧诱导的 miR-342-5p 下调通过 Raf1 调节剂 Spred3 加剧新生儿支气管肺发育不良

阅读:5
作者:Xin Wen, Hui Zhang, Bo Xiang, Weiyu Zhang, Fang Gong, Shiling Li, Hongyan Chen, Xuan Luo, Juan Deng, Yaoyao You, Zhangxue Hu, Changke Jiang

Background and purpose

Bronchopulmonary dysplasia (BPD) is the most prevalent chronic paediatric lung disease and is linked to the development of chronic obstructive pulmonary disease. MicroRNA-based regulation of type II alveolar epithelial cell (T2AEC) proliferation and apoptosis is an important factor in the pathogenesis of BPD and warrants further investigation. Experimental approach: Two murine models of hyperoxic lung injury (with or without miR-342-5p or Sprouty-related, EVH1 domain-containing protein 3 [Spred3] modulation) were employed: a hyperoxia-induced acute lung injury model (100% O2 on postnatal days 1-7) and the BPD model (100% O2 on postnatal days 1-4, followed by room air for 10 days). Tracheal aspirate pellets from healthy control and moderate/severe BPD neonates were randomly selected for clinical miR-342-5p analysis. Key

Purpose

Bronchopulmonary dysplasia (BPD) is the most prevalent chronic paediatric lung disease and is linked to the development of chronic obstructive pulmonary disease. MicroRNA-based regulation of type II alveolar epithelial cell (T2AEC) proliferation and apoptosis is an important factor in the pathogenesis of BPD and warrants further investigation. Experimental approach: Two murine models of hyperoxic lung injury (with or without miR-342-5p or Sprouty-related, EVH1 domain-containing protein 3 [Spred3] modulation) were employed: a hyperoxia-induced acute lung injury model (100% O2 on postnatal days 1-7) and the BPD model (100% O2 on postnatal days 1-4, followed by room air for 10 days). Tracheal aspirate pellets from healthy control and moderate/severe BPD neonates were randomly selected for clinical miR-342-5p analysis. Key

Results

Hyperoxia decreased miR-342-5p levels in primary T2AECs, MLE12 cells and neonatal mouse lungs. Transgenic miR-342 overexpression in neonatal mice ameliorated survival rates and improved the BPD phenotype and BPD-associated pulmonary arterial hypertension (PAH). T2AEC-specific miR-342 transgenic overexpression, as well as miR-342-5p mimic therapy, also ameliorated the BPD phenotype and associated PAH. miR-342-5p targets the 3'UTR of the Raf1 regulator Spred3, inhibiting Spred3 expression. Treatment with recombinant Spred3 exacerbated the BPD phenotype and associated PAH. Notably, miR-342-5p inhibition under room air conditions did not mimic the BPD phenotype. Moderate/severe BPD tracheal aspirate pellets exhibited decreased miR-342-5p levels relative to healthy control pellets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。