Anemic hypoxemia reduces myoblast proliferation and muscle growth in late-gestation fetal sheep

贫血性低氧血症降低妊娠晚期胎羊成肌细胞增殖和肌肉生长

阅读:6
作者:Paul J Rozance, Stephanie R Wesolowski, Sonnet S Jonker, Laura D Brown

Abstract

Fetal skeletal muscle growth requires myoblast proliferation, differentiation, and fusion into myofibers in addition to protein accretion for fiber hypertrophy. Oxygen is an important regulator of this process. Therefore, we hypothesized that fetal anemic hypoxemia would inhibit skeletal muscle growth. Studies were performed in late-gestation fetal sheep that were bled to anemic and therefore hypoxemic conditions beginning at ∼125 days of gestation (term = 148 days) for 9 ± 0 days (n = 19) and compared with control fetuses (n = 16). A metabolic study was performed on gestational day ∼134 to measure fetal protein kinetic rates. Myoblast proliferation and myofiber area were determined in biceps femoris (BF), tibialis anterior (TA), and flexor digitorum superficialis (FDS) muscles. mRNA expression of muscle regulatory factors was determined in BF. Fetal arterial hematocrit and oxygen content were 28% and 52% lower, respectively, in anemic fetuses. Fetal weight and whole body protein synthesis, breakdown, and accretion rates were not different between groups. Hindlimb length, however, was 7% shorter in anemic fetuses. TA and FDS muscles weighed less, and FDS myofiber area was smaller in anemic fetuses compared with controls. The percentage of Pax7+ myoblasts that expressed Ki67 was lower in BF and tended to be lower in FDS from anemic fetuses indicating reduced myoblast proliferation. There was less MYOD and MYF6 mRNA expression in anemic versus control BF consistent with reduced myoblast differentiation. These results indicate that fetal anemic hypoxemia reduced muscle growth. We speculate that fetal muscle growth may be improved by strategies that increase oxygen availability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。