Wen-Xin Decoction ameliorates vascular endothelium dysfunction via the PI3K/AKT/eNOS pathway in experimental atherosclerosis in rats

稳心汤通过 PI3K/AKT/eNOS 通路改善实验性动脉粥样硬化大鼠的血管内皮功能障碍

阅读:5
作者:Tongda Li, Dongmei Li, Hui Xu, Huamin Zhang, Danli Tang, Hongxin Cao

Background

Nitric oxide (NO) is the most powerful vasodilator that inhibits leukocyte adhesion, platelet aggregation, and vascular smooth muscle cell proliferation. However, excessive NO can cause lipid peroxidation and direct endothelial cell damage. Therefore, investigation of the role of NO in artherosclerosis development is important. Wen-Xin Decoction (WXD) has been shown to relieve myocardial ischemia reperfusion injury and prevent leukocyte adhesion and invasion; in addition, it can accelerate angiogenesis and prevent platelet activation and aggregation. In this study, we focused on the NO pathway to further clarify the protective effects of WXD on the vascular endothelium in rat models of artherosclerosis.

Conclusions

Our results suggest that WXD protects and maintains the integrity of the vascular endothelium by activating the PI3K/AKT/eNOS pathway, decreasing iNOS expression, and promoting the release of physiological NO levels.

Methods

Wistar rats were randomly divided into a normal group (n = 10) and a model group (n = 75). Rat models of atherosclerosis were generated by intraperitoneal vitamin D3 (3 months) injections and administration of a high-fat diet (3 months with vitamin D3 and 2 months alone). The model rats were randomly divided into five groups (n = 15 each): model (saline), atorvastatin (4.8 mg/kg/d atorvastatin), high-dose WXD (9 g/kg/d), medium-dose WXD (4.5 g/kg/d), and low-dose WXD (2.25 g/kg/d) groups. Each group received continuous drug or saline administration (suspended liquid gavage) for 30 days, following which all animals were sacrificed. The ultrastructure and histopathological changes of vascular endothelial cells and the expression of PI3K/AKT/eNOS and iNOS in the thoracic aorta tissue were analyzed.

Results

WXD increased NO levels, modulated the NO/ET-1 ratio, and promoted repair of the injured vascular endothelium in a dose-dependent manner. At a high dose, WXD regulated the NO/ET-1 ratio as effectively as atorvastatin; furthermore, it increased NO levels within the physiological range to prevent endothelial damage caused by excessive NO expression. Real-time polymerase chain reaction and Western blot analysis showed that WXD significantly upregulated the mRNA and protein expressions of PI3K, AKT, and eNOS mRNA and significantly increased AKT and eNOS phosphorylation. Conclusions: Our results suggest that WXD protects and maintains the integrity of the vascular endothelium by activating the PI3K/AKT/eNOS pathway, decreasing iNOS expression, and promoting the release of physiological NO levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。