Probing the Binding Requirements of Modified Nucleosides with the DNA Nuclease SNM1A

利用 DNA 核酸酶 SNM1A 探索修饰核苷的结合要求

阅读:4
作者:Eva-Maria Dürr, Joanna F McGouran

Abstract

SNM1A is a nuclease that is implicated in DNA interstrand crosslink repair and, as such, its inhibition is of interest for overcoming resistance to chemotherapeutic crosslinking agents. However, the number and identity of the metal ion(s) in the active site of SNM1A are still unconfirmed, and only a limited number of inhibitors have been reported to date. Herein, we report the synthesis and evaluation of a family of malonate-based modified nucleosides to investigate the optimal positioning of metal-binding groups in nucleoside-derived inhibitors for SNM1A. These compounds include ester, carboxylate and hydroxamic acid malonate derivatives which were installed in the 5'-position or 3'-position of thymidine or as a linkage between two nucleosides. Evaluation as inhibitors of recombinant SNM1A showed that nine of the twelve compounds tested had an inhibitory effect at 1 mM concentration. The most potent compound contains a hydroxamic acid malonate group at the 5'-position. Overall, our studies advance the understanding of requirements for nucleoside-derived inhibitors for SNM1A and indicate that groups containing a negatively charged group in close proximity to a metal chelator, such as hydroxamic acid malonates, are promising structures in the design of inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。