UBE2T promotes proliferation, invasion and glycolysis of breast cancer cells by regualting the PI3K/AKT signaling pathway

UBE2T通过调控PI3K/AKT信号通路促进乳腺癌细胞增殖、侵袭和糖酵解

阅读:9
作者:Lei Qiao, Chao Dong, Binlin Ma

Conclusion

UBE2T promoted proliferation, invasion and glycolysis through modulating PI3K/AKT signaling pathway in BCa, implying that UBE2T may provide a promising therapeutic target for the therapy of BCa.

Methods

UBE2T levels were detected using quantitative real time PCR and western blot. CCK-8 and colony formation assays were used to evaluate cell proliferation. A xenograft model was used to evaluate the effects of UBE2T on tumor growth in mice, and immunohistochemistry (IHC) assay was performed to detect the expression of UBE2T and Ki-67. Transwell assay was performed to determine cell migration and invasion. The ATP level, glucose consumption and lactate production were measured using the corresponding commercial kits. Western blot assay was used to detect the levels of epithelial-mesenchymal transformation (EMT), glycolytic and the PI3K/AKT pathway related proteins regulated by UBE2T.

Purpose

Breast cancer (BCa) is one of the most common gynecological malignancies. Ubiquitin-coupled enzyme E2T (UBE2T) has been demonstrated to play crucial roles in various tumors.

Results

Upregulation of UBE2T expression in human BCa tissues was found in human clinical BCa tissues and The Cancer Genome Atlas (TCGA) dataset. The expression of UBE2T was confirmed to be up-regulated in BCa cells compared to normal breast epithelial cell line (MCF-10A). Overexpression of UBE2T promoted proliferation, migration, invasion and glycolysis in BCa cells, while UBE2T knockdown showed the opposite results. Moreover, UBE2T knockdown suppressed tumor growth in mice. Further mechanism analysis shows that UBE2T participated in the regulation of BCa progression through affecting the PI3K/AKT signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。