Role of nuclear factor-kappa B in feline injection site sarcoma

核因子 κB 在猫注射部位肉瘤中的作用

阅读:7
作者:Cheng-Shun Hsueh, Ching-Ho Wu, Cheng-Hsin Shih, Jason Lih-Seng Yeh, Chian-Ren Jeng, Victor Fei Pang, Hue-Ying Chiou, Hui-Wen Chang

Background

Chronic inflammation has been implicated in sarcomagenesis. Among various factors, activation of nuclear factor-kappa B (NF-κB) signaling pathway has been documented being able to target genes associated with tumor progression and up-regulate the expression of tumor-promoting cytokines and survival genes in several human solid tumors. Feline injection sites sarcomas (FISS) are malignant entities derived from the mesenchymal origin. The disease has been considered to be associated with vaccine adjuvant, aluminum, which serves as a stimulus continuously inducing overzealous inflammatory and immunologic reactions. To understand the contribution of NF-κB in FISS, detection of activated NF-κB in paraffin-embedded specimens, in vitro establishment of primary cells derived from FISS, and evaluation of the effects of the NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on primary tumor cells were conducted.

Conclusions

High expression rate of nuclear NF-κB p65 in FISS cases and dose-dependent inhibitory effects on the growth of FISS primary cells treated with NF-κB inhibitor suggested that NF-κB might be a potential molecular therapeutic target for FISS.

Results

In this study, nuclear expression of NF-κB p65 was detected in 83.3% of FISS cases and not correlated with tumor grading, sex, and age. Primary cells derived from FISS in three cats exhibiting same immunohistochemical characteristics as their original tumor were successfully established. The NF-κB inhibitor, DHMEQ, was able to prevent nuclear translocation of NF-κB p65, inhibit cell proliferation, migration, and colonization in dosage-dependent manners, and induce cell apoptosis in these primary FISS cells. Conclusions: High expression rate of nuclear NF-κB p65 in FISS cases and dose-dependent inhibitory effects on the growth of FISS primary cells treated with NF-κB inhibitor suggested that NF-κB might be a potential molecular therapeutic target for FISS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。