Designing a Prolonged Method of Therapeutic Delivery to Support Rehabilitation From Ototoxic Damage in a Schwann Cell Model

设计一种延长治疗输送时间的方法,以支持雪旺细胞模型中耳毒性损伤的康复

阅读:6
作者:Michelle K Hong, Kristen A Echanique, Larry F Hoffman, Ashley E Kita

Background

Aminoglycosides and cisplatin are widely prescribed but known to cause ototoxicity. There is strong evidence that compromise to Schwann cells ensheathing inner ear afferent neurons

Conclusion

When dosed at their respective therapeutic ranges, cisplatin is more likely than gentamicin to induce damage to the Schwann cell model. Although NAC demonstrates an uncertain role in protecting against cisplatin-induced Schwann cell cytotoxicity, this study establishes a method to screen for other otoprotective medications to encapsulate into a tunable microparticle for localized drug delivery.

Methods

RT4-D6P2T rat schwannoma cells were used as a Schwann cell model to assess gentamicin and cisplatin toxicity and to screen for protective agents. Cell viability was evaluated with the MTT cell proliferation assay. N -acetylcysteine (NAC) was encapsulated into a PLGA microparticle, and its elution profile was determined.

Results

The estimated 50% lethal concentration dose for gentamicin was 805.6 μM, which was 46-fold higher than that for cisplatin (17.5 μM). In several trials, cells dosed with NAC and cisplatin demonstrated a 22.6% ( p < 0.001) increase in cell viability when compared with cisplatin alone. However, this protective effect was not consistent across all trials. NAC was encapsulated into a PLGA microparticle and elution plateaued at 5 days.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。