Dopamine D2 receptor-mediated neuroprotection in a G2019S Lrrk2 genetic model of Parkinson's disease

多巴胺 D2 受体介导的帕金森病 G2019S Lrrk2 基因模型中的神经保护作用

阅读:6
作者:Alessandro Tozzi, Michela Tantucci, Saverio Marchi, Petra Mazzocchetti, Michele Morari, Paolo Pinton, Andrea Mancini, Paolo Calabresi

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder in which genetic and environmental factors synergistically lead to loss of midbrain dopamine (DA) neurons. Mutation of leucine-rich repeated kinase2 (Lrrk2) genes is responsible for the majority of inherited familial cases of PD and can also be found in sporadic cases. The pathophysiological role of this kinase has to be fully understood yet. Hyperactivation of Lrrk2 kinase domain might represent a predisposing factor for both enhanced striatal glutamatergic release and mitochondrial vulnerability to environmental factors that are observed in PD. To investigate possible alterations of striatal susceptibility to mitochondrial dysfunction, we performed electrophysiological recordings from the nucleus striatum of a G2019S Lrrk2 mouse model of PD, as well as molecular and morphological analyses of G2019S Lrrk2-expressing SH-SY5Y neuroblastoma cells. In G2019S mice, we found reduced striatal DA levels, according to the hypothesis of alteration of dopaminergic transmission, and increased loss of field potential induced by the mitochondrial complex I inhibitor rotenone. This detrimental effect is reversed by the D2 DA receptor agonist quinpirole via the inhibition of the cAMP/PKA intracellular pathway. Analysis of mitochondrial functions in G2019S Lrrk2-expressing SH-SY5Y cells revealed strong rotenone-induced oxidative stress characterized by reduced Ca2+ buffering capability and ATP synthesis, production of reactive oxygen species, and increased mitochondrial fragmentation. Importantly, quinpirole was able to prevent all these changes. We suggest that the G2019S-Lrrk2 mutation is a predisposing factor for enhanced striatal susceptibility to mitochondrial dysfunction induced by exposure to mitochondrial environmental toxins and that the D2 receptor stimulation is neuroprotective on mitochondrial function, via the inhibition of cAMP/PKA intracellular pathway. We suggest new possible neuroprotective strategies for patients carrying this genetic alteration based on drugs specifically targeting Lrrk2 kinase domain and mitochondrial functionality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。