Mechanical stretch-induced osteogenic differentiation of human jaw bone marrow mesenchymal stem cells (hJBMMSCs) via inhibition of the NF-κB pathway

机械拉伸通过抑制 NF-κB 通路诱导人类颌骨骨髓间充质干细胞 (hJBMMSCs) 成骨分化

阅读:2
作者:Xiaoyan Chen, Yuan Liu, Wanghui Ding, Jiejun Shi, Shenglai Li, Yali Liu, Mengjie Wu, Huiming Wang

Abstract

Severe malocclusion can contribute to several serious dental and physical conditions, such as digestive difficulties, periodontal disease, and severe tooth decay. Orthodontic treatment is mainly used to treat malocclusion. Forces in orthodontic tooth results in bone resorption on the pressure side and bone deposition on the tension side. Osteoblasts have been considered as the key component in bone regeneration on the tension side. However, the underlying mechanisms remain unclear. In this study, we focus on how mechanical stretch regulates the osteogenesis during orthodontic treatment. Human jaw bone marrow mesenchymal stem cells (hJBMMSCs) were isolated from healthy adult donors and cultured in regular medium (control) or osteogenic medium (OS). Under OS culture, hJBMMSCs presented osteogenic differentiation potentials, as evidenced by increased mineralization, enhanced calcium deposition, and upregulated expression of osteogenesis markers (ALP, osterix, and Runx). What's more, the OS-induced osteogenesis of hJBMMSCs is associated with the dephosphorylation of IKK, activation of IKBα, and phosphorylation/nucleic accumulation of P65, which all indicated the inhibition of NF-κB activity. Overexpressing P65 in hJBMMSCs, which could constantly activate NF-κB, prevented the osteogenic differentiation in the OS. After that, we applied the Flexcell tension system, which could cause mechanical stretch on cultured hJBMMSCs to mimic the tension forces during tooth movement. Mechanical stretch resulted in 3.5-fold increase of ALP activity and 2.4-fold increase of calcium deposition after 7 days and 21 days treatment, respectively. The expression levels of ALP, Run×2, and Osterix were also significantly upregulated. In the meantime, applying mechanical stretch on OS-cultured hJBMMSCs also dramatically promoted the OS-induced osteogenesis. Both OS and mechanical stretch downregulated NF-κB activity. By overexpressing P65 in hJBMMSCs, neither OS nor mechanical stretch could induce their osteogenesis. These results indicated that, like OS induction, mechanical stretch-facilitated osteogenesis of hJBMMSCs by inhibiting NF-κB in the noninflammatory environments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。