KLF6 loss of function in human prostate cancer progression is implicated in resistance to androgen deprivation

KLF6 在人类前列腺癌进展中的功能丧失与对雄激素剥夺的抵抗有关

阅读:5
作者:XiaoMei Liu, Alejandro Gomez-Pinillos, Charisse Loder, Enrique Carrillo-de Santa Pau, Ruifang Qiao, Pamela D Unger, Ralf Kurek, Carole Oddoux, Jonathan Melamed, Robert E Gallagher, John Mandeli, Anna C Ferrari

Abstract

Inactivation of the transcription factor/tumor suppressor Krüppel-like factor 6 (KLF6) has been described in prostate cancer (PC). This study investigated the prevalence and significance of KLF6 exon 2 mutations and splice variants (SVs) in different stages of human PC progression. By using laser-capture microdissection and recombinant clone isolation of DNA sequences to enhance sensitivity, base changes were found in 20 (24.7%) of 81 PC tissues versus 1 (4%) of 25 normal prostate tissues (P = 0.02). Of 26 base changes, 54% produced nonsynonymous mutations. Only three mutations had driver characteristics (PCs, 4%; NPs, 0%). By using microdissection of fresh-frozen tissues and recombinant isolation of RNA sequences, SVs were found in 39 (75%) of 52 PCs and in 10 (45%) of 22 NPs (P = 0.01). Sixteen different SVs, including 13 unique SVs, were identified that used cryptic splicing sites and encoded nonfunctional KLF6 proteins. PCs that had survived hormone (androgen)-deprivation therapy (n = 21) had a significantly higher (P < 0.05) incidence, number, and expression level of nonfunctional SVs than either NPs (n = 22) or hormone-naïve PCs (n = 25). Forced expression of nonfunctional SVs conferred a survival advantage of androgen-dependent LNCaP cells under castration-simulated culture conditions. Together, these data suggest that decreased availability of functional KLF6 contributes to clinical PC progression. This decrease arises infrequently by somatic mutation and more commonly by the acquisition of SVs that provide a survival advantage under castrate conditions, enabling resistance to hormone therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。