Seeding hESCs to achieve optimal colony clonality

接种 hESC 以实现最佳克隆性

阅读:5
作者:L E Wadkin, S Orozco-Fuentes, I Neganova, S Bojic, A Laude, M Lako, N G Parker, A Shukurov

Abstract

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have promising clinical applications which often rely on clonally-homogeneous cell populations. To achieve this, it is important to ensure that each colony originates from a single founding cell and to avoid subsequent merging of colonies during their growth. Clonal homogeneity can be obtained with low seeding densities; however, this leads to low yield and viability. It is therefore important to quantitatively assess how seeding density affects clonality loss so that experimental protocols can be optimised to meet the required standards. Here we develop a quantitative framework for modelling the growth of hESC colonies from a given seeding density based on stochastic exponential growth. This allows us to identify the timescales for colony merges and over which colony size no longer predicts the number of founding cells. We demonstrate the success of our model by applying it to our own experiments of hESC colony growth; while this is based on a particular experimental set-up, the model can be applied more generally to other cell lines and experimental conditions to predict these important timescales.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。