Discovery of a Novel Nitric Oxide Binding Protein and Nitric-Oxide-Responsive Signaling Pathway in Pseudomonas aeruginosa

在铜绿假单胞菌中发现一种新型的一氧化氮结合蛋白和一氧化氮响应信号通路

阅读:5
作者:Sajjad Hossain, Elizabeth M Boon

Abstract

Nitric oxide (NO) is a radical diatomic gas molecule that, at low concentrations, plays important signaling roles in both eukaryotes and bacteria. In recent years, it has become evident that bacteria respond to low levels of NO in order to modulate their group behavior. Many bacteria respond via NO ligation to a well-established NO sensor called H-NOX (heme-nitric oxide/oxygen binding domain). Many others, such as Pseudomonas aeruginosa, lack an annotated hnoX gene in their genome yet are able to respond to low levels of NO to disperse their biofilms. This suggests the existence of a previously uncharacterized NO sensor. In this study, we describe the discovery of a novel nitric oxide binding protein (NosP; NO-sensing protein), which is much more widely conserved in bacteria than H-NOX, as well as a novel NO-responsive pathway in P. aeruginosa. We demonstrate that biofilms of a P. aeruginosa mutant lacking components of the NosP pathway lose the ability to disperse in response to NO. Upon cloning, expressing, and purifying NosP, we find it binds heme and ligates to NO with a dissociation rate constant that is comparable to that of other well-established NO-sensing proteins. Moreover, we show that NO-bound NosP is able to regulate the phosphorelay activity of a hybrid histidine kinase that is involved in biofilm regulation in P. aeruginosa. Thus, here, we present evidence of a novel NO-responsive pathway that regulates biofilm in P. aeruginosa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。