Inhibition of miRNA-21 attenuates the proliferation and metastasis of human osteosarcoma by upregulating PTEN

抑制 miRNA-21 可上调 PTEN 水平,抑制人骨肉瘤的增殖和转移

阅读:9
作者:Chen Li, Binwu Xu, Xinxin Miu, Zhongbo Deng, Hang Liao, Liang Hao

Abstract

The present study aimed to investigate the expression of micro (mi)RNA-21 in osteosarcoma cells, and its role in inhibiting the invasion and metastasis of osteosarcoma. Human osteosarcoma MG-63 cells and osteoblast hFOB1.19 cells were used to compare the expression of miRNA-21 using reverse transcription-quantitative polymerase chain reaction analysis. A miRNA-21 mimic or inhibitor were transfected into the MG-63 cells to upregulate and downregulate the expression of miRNA-21, respectively. The present study investigated the proliferation and invasion of transfected MG-63 cells using MTT and Transwell assays. Western blot analyses were used to investigate the regulation of important proteins in the phosphatase and tensin homolog/phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase (PTEN/PI3K/AKT) signaling pathway. Compared with hFOB1.19 cells, miRNA-21 expression was significantly upregulated in the MG-63 cells (P<0.01), which lead to increased proliferation. Downregulating miRNA-21 expression reduced the proliferation of MG-63 cells compared with hFOB1.19 cells. Invasion assays and western blot analyses revealed that the overexpression of miRNA-21 significantly enhanced the invasion ability of MG-63 cells and the expression of phosphorylated (p-)AKT, while downregulation of miRNA-21 expression reduced the protein level of AKT and p-AKT. In the MG-63 cells, miRNA-21 upregulation significantly inhibited the protein level of PTEN, resulting in significantly increased AKT and PI3K protein levels (P<0.01). In conclusion, the results of the present study indicate that the expression of miRNA-21, PI3K and AKT is increased in the osteosarcoma cell line MG-63, which results in reduced expression of PTEN and increased expression of proteins in the PI3K/AKT signaling pathway, and thus increases the aggressiveness of osteosarcoma cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。