The cytokine receptor Fn14 is a molecular brake on neuronal activity that mediates circadian function in vivo

细胞因子受体 Fn14 是神经活动的分子制动器,可介导体内昼夜节律功能

阅读:6
作者:Austin Ferro, Anosha Arshad, Leah Boyd, Tess Stanley, Adrian Berisha, Uma Vrudhula, Adrian M Gomez, Jeremy C Borniger, Lucas Cheadle

Abstract

To survive, organisms must adapt to a staggering diversity of environmental signals, ranging from sensory information to pathogenic infection, across the lifespan. At the same time, organisms intrinsically generate biological oscillations, such as circadian rhythms, without input from the environment. While the nervous system is well-suited to integrate extrinsic and intrinsic cues, how the brain balances these influences to shape biological function system-wide is not well understood at the molecular level. Here, we demonstrate that the cytokine receptor Fn14, previously identified as a mediator of sensory experience-dependent synaptic refinement during brain development, regulates neuronal activity and function in adult mice in a time-of-day-dependent manner. We show that a subset of excitatory pyramidal (PYR) neurons in the CA1 subregion of the hippocampus increase Fn14 expression when neuronal activity is heightened. Once expressed, Fn14 constrains the activity of these same PYR neurons, suggesting that Fn14 operates as a molecular brake on neuronal activity. Strikingly, differences in PYR neuron activity between mice lacking or expressing Fn14 were most robust at daily transitions between light and dark, and genetic ablation of Fn14 caused aberrations in circadian rhythms, sleep-wake states, and sensory-cued and spatial memory. At the cellular level, microglia contacted fewer, but larger, excitatory synapses in CA1 in the absence of Fn14, suggesting that these brain-resident immune cells may dampen neuronal activity by modifying synaptic inputs onto PYR neurons. Finally, mice lacking Fn14 exhibited heightened susceptibility to chemically induced seizures, implicating Fn14 in disorders characterized by hyperexcitation, such as epilepsy. Altogether, these findings reveal that cytokine receptors that mediates inflammation in the periphery, such as Fn14, can also play major roles in healthy neurological function in the adult brain downstream of both extrinsic and intrinsic cues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。