Study on Neuroprotective Mechanism of Houshiheisan in Ischemic Stroke Based on Transcriptomics and Experimental Verification

基于转录组学及实验验证的侯氏黑散对缺血性中风的神经保护机制研究

阅读:8
作者:Hongfa Cheng, Yawen Zhang, Xiaoyao Guo, Xuan Wang, Hanyu Wang, Hui Zhao, Lei Wang, Haiyan Zou, Qiuxia Zhang

Abstract

Houshiheisan (HSHS), a classic prescription in traditional Chinese medicine (TCM), has shown outstanding efficacy in treating stroke. This study investigated various therapeutic targets of HSHS for ischemic stroke using mRNA transcriptomics. Herein, rats were randomly separated into the sham, model, HSHS 5.25 g/kg (HSHS5.25), and HSHS 10.5 g/kg (HSHS10.5) groups. Rats suffering from stroke were induced by permanent middle cerebral artery occlusion (pMCAO). After seven days of HSHS treatment, behavioral tests were conducted, and histological damage was examined with hematoxylin-eosin (HE). The mRNA expression profiles were identified using microarray analysis and quantitative real-time PCR (qRT-PCR) validated gene expression changes. An analysis of gene ontology and pathway enrichment was conducted to analyze potential mechanisms confirmed using immunofluorescence and western blotting. HSHS5.25 and HSHS10.5 improved neurological deficits and pathological injury in pMCAO rats. The intersections of 666 differentially expressed genes (DEGs) were chosen using transcriptomics analysis in the sham, model, and HSHS10.5 groups. The enrichment analysis suggested that the therapeutic targets of HSHS might regulate the apoptotic process and ERK1/2 signaling pathway, which was related to neuronal survival. Moreover, TUNEL and immunofluorescence analysis indicated that HSHS inhibited apoptosis and enhanced neuronal survival in the ischemic lesion. Western blot and immunofluorescence assay indicated that HSHS10.5 decreased Bax/Bcl-2 ratio and suppressed caspase-3 activation, while the phosphorylation of ERK1/2 and CREB was upregulated in a stroke rat model after HSHS treatment. Effective inhibition of neuronal apoptosis by activating the ERK1/2-CREB signaling pathway may be a potential mechanism for HSHS in the treatment of ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。